

Evaluation and monitoring of long term restoration projects in the Mediterranean

Abstract

- 1) Introduction
- 2) (REACTION framework S. Bautista)
- **3) REACTION** in time and space
- 4) Epoch 3 : 1990-... Ecological restoration
- 5) Epoch 2 : 1950-1990 Afforestation for wood production
- 6) Epoch 1 : 1860-1930 Afforestation for erosion control...
- 7) Evaluation 120 years after afforestation : a case study (France)
- 8) Final discussion

WWF CONSERVATION PRIORITIES

6 TOPICS

PRIORITY ECOREGIONS ?

6 THEMES + WHERE = CONSERVATION PRIORITIES

WWF forests priorities

Protected areas

Management silvilcuture Ecocertification

Restore Forest biodiversity, human well-bing

300 forest hotspots in the Med - -

WWF at work for forests issues

Protect, Manage, <u>Restore</u>

WWF, 2001

Evaluation and monitoring of long term restoration projects in the Mediterranean

Why it is compulsory evaluate and monitor ?

- Confirm restoration hypothesis and choices
- Proceed to fine-tuning management actions
- Adapt restoration actions to changes
- Prove to stakeholders that investment is worthwhile (should continue)

What to evaluate and monitor ?

- Silvicultural aspects
- Ecological aspects : biodiversity, naturalness, ecological integrity
- Trends in key threat/pressures
- Environmental benefits
- Livelihoods and well-being
- other political/economical/social relevants aspects

Beyond technical or ecological evaluation

How to evaluate and monitor ?

- A pertinent set of criteria
- At pertinent scale<u>s</u> (several)
- Each indicator should be SM(a)RRT : Simple, Measurable, Reliable, Relevant, Timely
- A framework (see REACTION questionnaire)

TOOLS to evaluate and to monitor

- reference or target systems
- landscape and ecosystem attributes
- photographs, mapping, notes, studies...
- (socio-economical attributes)
- restoration plans
- restoration databases

(www.unep-wcmc.org/forest/restoration/database ;
www.gva.es/ceam/reaction/)

• tested criteria and indicators

REACTION framework S. Bautista

REACTION in time ?

1860 to now

Aronson, J., Le Floc'h E. 1996. Restoration ecology, 4(4) : 327-333

Epoch 1 : 1860-1930 Afforestation of watersheds for erosion control...

Threats

- over-grazing
- over-havesting
- erosion
- desertification
- poverty

Haute-Provence, 1860

Epoch 2: 1950-1990 (locally still active)

Afforestation for wood production

Threats/problems

- fires
- lack of commercial value

Epoch 3 : 1990-... Ecological restoration (and the use of natural dynamics)

Threats

- Species and habitat loss
- land abandonment
- infrastructure building, urbanisation and tourism
- global warming

REACTION in space ?

Sardinia (Italia)

- 10 different success cases of Pinus plantation
- A few restored sites through natural dynamics
- implemented from 1901 to 1965
- for economically and environmental reasons

Forest restoration in France

France

Forest cover

10 1112 13 6 1 French Administrative Departments

5

- 1-Rialsesse
- 2-La Vis
- 3- Aigoual
- 4- La Fage
- 5- Mount Ventoux
- 6- Mt. Sainte-Victoire
- 7-Palayson

- 8 Montmeyan
- 9 Esterel
- 10 Saignon
- 11 Brusquet
- 12 Laval
- 13 Belvezet Plateau
- 14 Riou Bourdoux

Spain

- 4 in Andalucia
- 4 in Murcia (including Sierra Espuna)
- 1 in Valencia Region
- 1 in Aragon

FOREST FIRES 2003

(Source: DGRF, 2004)

Epoch 3 : 1990-... (some older) Ecological restoration and the use of natural dynamics

Restoring a cultural landscape after fire : Cézanne's *Montagne Sainte-Victoire* (France)

Restoring Cézanne's *Montagne Sainte-Victoire* after fire

• Forest restoration vs. cultural monument?

- Restoration could take advantages of cultural stakes when ecologically appropriate
 - aesthetic landscapes
 - areas protected for religion
 - sustainable traditional land-use
 - Historical/cultural landscape

Restoration through natural dynamics in sardinian mountains (Italia)

M.Lerno Bilozze (Sardinia) 1939-2004

Limbara (Sardinia) 1939

Limbara (Sardinia) 2004

Epoch 2: 1950-1990 (locally still active)

Afforestation for wood production

Afforestation in Stratoni, Northeastern Halkidiki (Greece)

Epoch 1 : 1860-1930 Afforestation of watersheds for erosion control...

Stabilized littoral sand dunes in northern Sardinia at Platamona (Sardinia)

MILIZIA NAZIONALE FORESTALE

SASSARI: Sabbie litoranee in corso di sistemazione.

COMANDO CENTURIA DI SASSARI

MILIZIA NAZIONALE FORESTALE

1ª Coorte Autonoma

COMANDO CENTURIA DI SASSARI

Foci Coghinas (Castelsardo-Sedini) Rimboschimento, previo imbrigliamento delle sabbie litoranee.

Anno XVII E. F.

Afforestation for watershed restoration in Sierra Espuna (Spain)

RACTION

Restoration Actions to Combat Desertification in the Northern Mediterranean

Project	Sierra Espuña
Objectives	Soil erosion control
Surface (ha)	625
Year	1890
Species	Pinus halepensis, Pinus nigra, Quercus ilex
Soil preparation technique	Manual hole
Questionnaire	In progress

(Today Regional Park)

Thessaloniki, 23-25 Septiembre 2004

in the Northern Mediterranean

REACTION Restoration Actions to Combat Desertification in the Northern Mediterranean

Restoring forest cover for erosion control Haute-Provence (France)

Forest restoration advances 130 years after reforestation on badlands

Introduction

Some results

- → Ecological trajectories
- → Forest restoration advances
- → Functional analysis : 3 vital attributes

→ biological activity of soils, tree diversity and pests

Conclusion

- → Ecological diagnosis
- → Implications for monitoring

Introduction

Forest restoration goals in 1860

	Ecological	Economical	Social	Cultural
Goals	Erosion control	Protection Desertification	<u>Jobs</u>	None
Key elements	Civil eng. Pioneers	Land purchase expropriation	Imposed policy	None
Success criteria	Erosion control	No data	Local jobs	None
Elements for sustainable management	No data	No data	No data	none

Ecological trajectories

- Long term ecological trajectories
 - from pollen and charcoal analysis
 - from cadastral maps
 - from old photographs and landscape interpretation

Restoration trajectory

Restoration trajectory

Ecological trajectory

Type of vegetation	1836	1948	1995	2042
Degraded and eroded lands	≈ 52	32	24	18
scree		1.19	0.72	0.43
clear "lavandaie"		2.86	2.55	1.99
badlands with no grasses or shrubs		19.03	5.01	1.75
badlands colonized less than 50 %		5.41	8.76	5.48
badlands colonized more than 50 %		3.10	6.69	8.47
Grasslands and shrubs	≈ 40	38	20	14
grasslands		9.79	0.16	0.18
grassland colonized by shrubs		15.84	10.11	7.11
Heath		12.42	9.63	6.78
Wetlands	0	0	1.03	0.88
Woodlands	8		55	67
pionneer stands		4.62	7.40	6.03
Austrian pine		19.19	32.24	17.77
mature broadleaved stands		6.45	14.09	30.54
mixt stands		0	1.83	12.77

Restoration process

FIG. 2.– The framework of forest restoration in south-western Alps : from rehabilitation of badlands (1860-1930) to natural dynamics facilitation (1930-2030).

Vallauri, D. 1998. Ecologie, 29(1-2) : 329-332

Forest restoration goals in 1995

	Ecological	Economical	Social	Cultural
Goals	Erosion control	Protection	Jobs Recreation	History of change
Key elements	Native dynamics	Cheap & integrated in dev. plans	Open the forests	Memory of degradation
Success criteria	Functional integrity	Management costs		Awareness
Elements for sustainable management	Mixed forest	Subsidies	No data	none

Evaluation of forest restoration advances

Component analysed

• Soils

- Plant communities
 - Forest stands
 - Tree growth

Soil restoration advances

Soil depth : mean 40 cm 7 < pH < 8 Hcl +++Humus layer : dysmull

Plant communities restoration advances

Forest stands restoration advances

Tree growth

Rehabilitated ecosystems : viability and dynamics

Ecological viability = $1 \ge 2$

• Integrity

which elements are still missing?

• Functionning

does the system work well?

Rehabilitated ecosystems : viability and dynamics

Investigation of 3 potential constraints through 3 vital attributes

- Soil fertility
- Forest stands regeneration
- Pests

- Earthworm population dynamics
- Tree and seedling diversity
- Leafy mistletoe dynamics (*Viscum album* L.)

Earthworms 130 years after rehabilitation

- 12 species
- 2 key-stone species : *Lumbricus terrestris*, *Octolasion cyaneum*
- 1 à 49 / m2, 1 à 27 g / m2, low individual growth
- epi-anecic and endogeic species
- density of juvéniles > adults
- 6 earthworm associations
- dynamics by *L. terrestris* and *O. cyaneum*

Earthworms 130 years after rehabilitation

Tree diversity 130 years after rehabilitation

at community level

the dynamics of of most of the broadleaved species are not limited by the type of site

Tree diversity 130 years after rehabilitation

at landscape level → Full connection is recent Dissemination towards the restored ecosystems is low due to stand structure

Sensitivity to pests 130 years after rehabilitation

- Unknown on Austrian pine
- Recent and high level of infestation
- High tree mortality

Sensitivity to pests 130 years after rehabilitation

- Unknown on Austrian pine
- Recent and high level of infestation
- High tree mortality

Number of axis : 64 to 720 Mean age : 4.9 to 9.9 years Year of the maximum infestation : 1986 to 1995

Ecological diagnosis

- Success criteria : functional integrity
 - Biodiversity
 - Resilience and resistance to disrturbances, pests, ...
 - Long-term dynamics
- How to assess success criteria ?
 - Test several life organisation levels
 - Consider long time periods
 - Identifying vital attributes and key populations
 - Diagnosis regularly renewed

Conclusion for forest managers

- step in carefully
 - no erosion
 - shelterwood felling, small patches
- mimic natural processes
 - restore tree diversity
 - favour native broadleaved species and natural regeneration
 - manage mistletoe as an element of biodiversity
- speed up restoration, anticipate problems
 - thinning in the youngest stands
 - prepare the sylviculture of mixt stands
 - pilot the stands toward the target ecosystems (oak and beech forest)

CONCLUSION AND PERSPECTIVES